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Abstract
Linear stability characteristics of an anomalous sub-diffusive activator–
inhibitor system are investigated through a mesoscopic model, where anomaly
ensues by a memory integro-differential operator with an equal anomaly
exponent for all species. It is shown that monotonic instability, known from
normal diffusion, persists in the anomalous system, thereby allowing Turing
pattern occurrence. Presence of anomaly stabilizes the system by diminution
of the range of diffusion coefficients’ ratio involving instability. In addition,
the maximal growth rate is diminished, proving the existence of an absolutely
stable anomalous system.

PACS number: 82.40.Ck

1. Introduction

It has been realized recently that in many physical processes the conception of normal diffusion,
with its inherent temporal scaling of the mean square displacement 〈r2(t)〉 ∼ t , is unsuitable.
A more general relation, 〈r2(t)〉 ∼ tγ , is characteristic for sub-diffusion (0 < γ < 1) or
super-diffusion (γ > 1). A variety of physical phenomena exhibiting anomalous diffusion
can be found in the review papers [1, 2].

In a number of systems anomalous diffusion is accompanied by chemical reactions. For
instance, biological media such as lipid bilayers hinder the reaction rate due to their involved
structure [3]. In whole living cells the presence of numerous organelles also obstructs normal
diffusion [4]. At a fractal interface such as an electrode–electrolyte the reaction rate is reduced
due to surface irregularity [5].

The mathematical modelling of the reaction–diffusion phenomena in systems with
anomalous diffusion is far from complete. The simplest replacement of the Laplacian
operator by a fractional derivative with the reaction term unchanged may be reasonable when
the reactions are activation limited or mediated by additional, normally diffusing reagents.
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Conversely, if the progress of a diffusion limited reaction is impeded by the same physical
factors that hinder the diffusion, the reaction term has to be modified by the application of a
fractional derivative [6]. Still, there are memory effects that cannot be described by means of
fractional derivative operators. As has been recently shown in [7–9] for a uni-molecular decay
reaction, a more involved integro-differential operator is then required.

One of the basic phenomena observed in normal reaction–diffusion processes is the
appearance of spatial (Turing) patterns, when a homogeneous steady state solution is linearly
stable in the absence of diffusion, yet unstable to small spatial perturbations in the presence
of diffusion [10–12].

In the present paper, the model developed in [7, 8] is extended to the case of an arbitrary
number of species and arbitrary linear kinetics. This extension allows us to formulate the
conditions for the appearance of Turing instability.

2. Mathematical model

A system of n reacting species is considered, characterized by the vector of concentrations
N(r, t) = {Ni(r, t)}, i = 1, . . . , n. When the species’ spatial distribution is homogeneous,
the temporal evolution of N is governed by the system of kinetic equations

dN
dt

= f(N). (1)

The function f is generally nonlinear (see [10] for specific examples). As the current paper is
devoted to the effects of memory (due to sub-diffusion) on Turing instability, f is kept in its
generic form.

If (1) possesses an equilibrium state N0 so that f(N0) = 0, a small density perturbation n
around N0 evolves according to

dn
dt

= ∇f n, (∇f)ij = ∂fi

∂Nj

, i, j ∈ {1, . . . , n}. (2)

Then by (2)

n(t) = e∇f(t−t ′)n(t ′), (3)

where t ′ is a reference time.
Later on, it is assumed that the eigenvalues of the matrix (∇f)ij have negative real parts

corresponding to the stability of N0. However, it is known that in the presence of normal
diffusion instability can arise with respect to spatially inhomogeneous disturbances (Turing
instability) [10].

The appearance of Turing instability in a system with anomalous diffusion is considered
in the framework of the following model. The basic assumption is that a mutual conversion
of different species (on the background of the equilibrium state) is governed by the linear
law (3) independently of their position and the time of their arrival to a definite position. This
evolution law can be achieved as the result of chemical reactions mediated by some abundant
and easily diffusing catalysts (rather than through a direct interaction of species). Assume
also that the particles of species i are subject to a continuous time random walk governed
by the probability distribution function ψi(r, t) = µi(r)w(t), i = 1, . . . , n, with the jump
length distribution µi(r) dependent on the kind of molecules that carry out a jump, and the
waiting time distribution independent of the kind of molecules (another model is discussed in
the appendix).

As emphasized in [8], one can distinguish between two cases: (i) the chemical reaction
does not affect the waiting time distribution, i.e., changes in chemical composition do not entail
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a change in particles’ ‘age’; (ii) the newborn particles produced by a reaction are assigned a
new waiting time, i.e., zero ‘age’. The choice should be according to the particular problem
and underlying microscopic phenomena that are not discussed here. Case (ii) has been studied
in [13, 14]. There, even in a nearly equilibrium state the diffusion might be essentially reduced
due to persisting mutual transformations of particles, preventing their ‘aging’. In the present
paper, case (i) is chosen following [7, 8]: the particle ‘age’ is not changed due to the reaction,
but the probability to jump is determined by the actual kind of the molecule at the time of the
jump.

Now consider a ‘population’ of particles that belong to species i and arrive at the location
r at the time instant t > 0. Let ni(r, t) be their density. Each particle from this population has
carried out its previous jump to a certain location r′ at a certain time instant t ′. In the absence
of the chemical reactions, the density ni(r, t) is directly collected from all the points (r′, t ′),
hence

ni(r, t) =
∫

�

∫ t

0
µi(r − r′)w(t − t ′)ni(r′, t ′) dt ′ dr′, t > 0. (4)

The domain � is the whole space or has a rectangular shape; the dimension of the space is
arbitrary. In the presence of a permanent change of the chemical composition governed by (3),
which does not depend on the position and age, one has to replace the chemical composition
ni(r′, t ′) on the right-hand side of (4) by the actual composition of particles at the time of the
jump t, i.e., by

n∑
j=1

(e∇f(t−t ′))ij nj (r′, t ′).

Hence one arrives at the equation

ni(r, t) =
∫

�

∫ t

0
µi(r − r′)w(t − t ′)

n∑
j=1

(e∇f(t−t ′))ij nj (r′, t ′) dt ′ dr′. (5)

To incorporate the initial condition, all the particles are taken with the initial density n0(r) as
arriving to the point r at the time instant t = 0. Using the vector form of presentation,

n(r, t) = n0(r)δ(t) +
∫

�

∫ t

0
µ(r − r′)w(t − t ′) e∇f(t−t ′)n(r′, t ′) dt ′ dr′, (6)

where n0(r) is the initial density perturbation and δ(t) denotes the Dirac delta function. Here
µ is a diagonal matrix with µii = µi, i = {1, . . . , n}. Fourier transform of (6) yields

n̂(q, t) = n̂0(q)δ(t) + µ̂(q)

∫ t

0
w(t − t ′) e∇f(t−t ′)n̂(q, t ′) dt ′, (7)

where q is the wave vector and the hat denotes transformed functions. Later on, a long-wave
approximation

µ̂i(q) ∼ 1 − q2σ 2
i + o(q2), q = |q|, (8)

will be used. Laplace transform of (7) leads to an algebraic system,

˜̂n(q, s)(I − µ̂(q)L[w(t) e∇ft ](s)) = n̂0(q), (9)

where s is the transform variable, the tilde denotes transformed functions and I is the identity
matrix of appropriate dimension. Thus the disturbance dispersion relation can be written as

det(I − µ̂(q)L[w(t) e∇ft ](s)) = 0. (10)
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3. Dispersion relation

3.1. General formulae

An explicit derivation of the dispersion relation from expression (10) requires some preliminary
definitions. A non-singular matrix An×n is diagonizable in the basis of its eigenvectors, so that

A = V �V −1, V = [v1 · · · vn], � =

⎛
⎜⎝

λ1 0
. . .

0 λn

⎞
⎟⎠ . (11)

Bold font is used throughout for vectors, λj are the eigenvalues of A corresponding to
the eigenvectors vj , j = {1, . . . , n}. The rows of the inverse matrix V −1 are denoted rj .
The matrices (−A), exp(A) and Aα, α ∈ R, possess an identical set of eigenvectors, and
the corresponding eigenvalues are, respectively, negatives, exponents and α-powers of the
eigenvalues of A. The scalar Laplace transform argument shift formula

L[eaty(t)](s) = L[y(t)](s − a) (12)

is generalized as follows:

L[eAty(t)](s) =
∫ ∞

0
e−st eAty(t) dt

=
∫ ∞

0
e−stV e�tV −1y(t) dt =

n∑
j=1

vj rjL[y(t)](s − λj ). (13)

Henceforth A = ∇f, and the matrices �,V are the corresponding diagonal matrix of
eigenvalues and basis of eigenvectors of dimension n.

3.2. Particular cases

3.2.1. Turing instability for normal diffusion and super-diffusion. Taking a two-species
system with a waiting distribution function of the form

w(t) = τ−1 e−t/τ (14)

and sensitivity matrix ∇f, whose distinct eigenvalues λ1, λ2 possess a negative real part, (10)
becomes

det

(
I − τ−1µ

∫ ∞

0
e(∇f−(s+1/τ)I )t dt

)
= 0. (15)

Performing the integration and substituting

µ ∼ 1 − q2� + o(q2), � =
(

σ 2
1 0

0 σ 2
2

)
, (16)

the dispersion relation known for normal diffusion is recovered:

det(sI − ∇f − q2D) = 0, D = τ−1�. (17)

In the case of super-diffusion caused by the long tails of the step length distribution function
(Lévy flights),

µ ∼ 1 − |q|γ � + o(|q|γ ), 1 < γ < 2, (18)

and, in a similar way, one obtains

det (sI − ∇f − |q|γ D) = 0. (19)
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3.2.2. Anomalous diffusion with exponential decay. As a second example, take a single
species system (n = 1) where exp(∇f)t is replaced by exp(−kt), while the Laplace
transformed waiting distribution function corresponds to an anomalous diffusion [7, 8]:

w̃(s) � 1 − �(1 − γ )τ γ sγ + o(|s|γ ). (20)

Then

L[w(t) e−kt ] = w̃(s + k) � 1 − �(1 − γ )τ γ (s + k)γ + o(|s|γ ), (21)

and (10) becomes (to leading order)

s + k = − q2σ 2

�(1 − γ )τ γ
(s + k)1−γ , (22)

recovering the results obtained in [7, 8].

3.2.3. Anomalous diffusion with linear kinetics of arbitrary dimension n. As in the previous
example, w̃(s) is given by (20). By (13),

L[w(t) e∇ft ] =
n∑

j=1

vj rj (1 − �(1 − γ )τ γ (s − λj )
γ )

= I − �(1 − γ )τ γ (sI − ∇f)γ . (23)

Substituting into (10) and using (16) gives in the limit of small q

det(q2C + (I s − ∇f)γ ) = 0, C = �

�(1 − γ )τ γ
. (24)

Another model leading to (24) is presented in the appendix.

3.3. Stability of an activator–inhibitor anomalous system (n = 2)

For the purpose of roots comparison with normal diffusion, (24) is written in an equivalent,
more convenient form via multiplication by (I s − ∇f)1−γ from the right:

det(I s − ∇f + q2CV (Is − �)1−γ V −1) = 0. (25)

Later on, it is assumed that λ1 and λ2, the eigenvalues of ∇f2×2, are complex conjugate,

λ1 = 1
2 (tr ∇f + i

√
4 det ∇f − tr2∇f), λ2 = λ∗

1, (26)

and Re λj < 0 (the system is stable in the absence of diffusion). The eigenvectors basis is
taken as

V =
(

∇f12 ∇f12

−(∇f11 − λ1) −(∇f11 − λ2)

)
. (27)

After rearrangement (25) becomes

s2 − tr ∇f s + det ∇f + dq4(s − λ1)
1−γ (s − λ2)

1−γ +
q2

det V
∇f12(S(s, λ1) − S(s, λ2)) = 0

(28a)

with

S(s, λ) = sG(s, λ) + F(s, λ), (28b)

F(s, λ) = [(d + 1) det ∇f − λ∗trw∇f](s − λ)1−γ , (28c)
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G(s, λ) = [(d − 1)∇f11 + λ∗ − dλ](s − λ)1−γ , (28d)

and the sensitivity matrix weighted trace being

trw∇f = d∇f11 + ∇f22. (29)

For γ = 1 expression (28a) immediately reduces to the relation known for normal
diffusion. Then with s = 0 the quartics

dq4 − trw∇f q2 + det ∇f = 0 (30)

gives the set of coefficients d for instability and the corresponding range of unstable wave
numbers. For γ < 1 it is replaced by

d(det ∇f)1−γ q4 − q2 ImF(0, λ1)

Im λ1
+ det ∇f = 0. (31)

As the system is stable in the absence of diffusion, det ∇f > 0 [10]. Hence the roots’ product
is positive,

q2
+q2

− = 1

d
(det ∇f)γ > 0, (32)

and their real parts are of identical sign. To express ImF(0, λ1) the following notation is
introduced:

λ1 =
√

det ∇f eiθ ,
π

2
< θ < π, ϑ = π − θ. (33)

Then

ImF(0, λ1) = (det ∇f)1−γ /2(trw∇f sin γϑ − (d + 1)
√

det ∇f sin(1 − γ )ϑ). (34)

Since Im λ1 > 0,

sign(q2
+ + q2

−) = sign ImF(0, λ1). (35)

For the roots to have positive real parts

trw∇f > (d + 1)
√

det ∇ff (γ ;ϑ), f (γ ;ϑ) = sin(1 − γ )ϑ

sin γϑ
. (36)

The function f (γ ;ϑ) decreases monotonically over the range 0 � γ � 1:

f (0;ϑ) = ∞, f (1;ϑ) = 0,
∂f

∂γ
= −ϑ

sin ϑ

sin2 γϑ
< 0. (37)

Therefore inequality (36) poses an increasingly severe condition relatively to the normal
trw∇f > 0, as the system becomes more anomalous. The emanating normal demand ∇f11 > 0
is replaced by a consequently more severe requirement

∇f11 >
√

det ∇ff (γ ;ϑ). (38)

For the roots to be real the discriminant of (31) should be positive, giving

tr2
w∇f g(γ ;ϑ) − 4d det ∇f > h(γ ; ∇f, d), (39a)

g(γ ;ϑ) = sin2 γϑ

sin2 ϑ
(39b)

h(γ ; ∇f, d) = 2trw∇f(d + 1)
√

det ∇f
sin γϑ

sin2 ϑ
sin(1 − γ )ϑ − (d + 1)2 det ∇f

sin2(1 − γ )ϑ

sin2 ϑ
.

(39c)
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The function g(γ ;ϑ) grows monotonically over the range 0 � γ � 1:

g(0;ϑ) = 0, g(1;ϑ) = 1,
∂g

∂γ
= ϑ

sin 2γϑ

sin2 ϑ
> 0. (40)

The function h(γ ; ∇f, d) is not monotonic. Seeking an extremum gives

tan(1 − 2γext)ϑ = − (d + 1)
√

det ∇f sin ϑ

2 trw∇f + (d + 1)
√

det ∇f cos ϑ
. (41)

The right-hand side is negative, thus γext > 1/2. Solving h(γ ; ∇f, d) = 0 yields γ = 1 and
another root γ∗ satisfying

cot γ∗ϑ = cot ϑ +
2 trw∇f

(d + 1)
√

det ∇f sin ϑ
, (42)

whence

cot γ∗ϑ > cot ϑ. (43)

Since cotangent is a descending function, γ∗ < 1. Therefore h(γ ; ∇f, d) ascends from some
negative value at γ = 0, crosses the abscissa at γ∗, attains a maximum at γext and descends
again to zero at γ = 1. Inspection of (39a) leads to the following conclusion: as γ becomes
slightly smaller than unity, the right-hand side of (39a) turns positive through h(γ ; ∇f, d),
whereas the left-hand side grows smaller via g(γ ;ϑ). Therefore condition (39a) is more
severe than the normal,

tr2
w∇f − 4d det ∇f > 0. (44)

Moreover, at some range of 0 < γ < 1, this condition will become unsatisfiable if the left-
hand side turns negative whilst h(γ ; ∇f, d) still remains positive. As γ is diminished further,
it will be possible to satisfy (39a) again. To have an estimation of this range of γ , note that at
γ = γ∗ condition (36) fails. To see this, rearrange inequality (36) into

cot γϑ < cot ϑ +
trw∇f

(d + 1)
√

det ∇f sin ϑ
(45)

and compare to (42). From cotangent monotonic descent it follows that to satisfy (36) the
value of γ should exceed to some extent γ∗.

Similarly to the normal case, it is possible to find the critical ratio of diffusion coefficients
by equating the discriminant of (31) to zero. The implicit relation is

dM(γ ) = 1

4 det ∇f
1

sin2 ϑ
(trw∇f sin γϑ − (dM + 1)

√
det ∇f sin(1 − γ )ϑ)2, (46)

a quadratics for dM(γ ). Differentiating with respect to γ and rearranging yields

d

dγ
dM(γ ) = −ϑ

trw∇f cos γϑ +
√

det ∇f(dM + 1) cos(1 − γ )ϑ

∇f11 sin γϑ − √
det ∇f(sin(1 − γ )ϑ + sin ϑ/

√
dM)

. (47)

By (46)

dM(∇f11 sin γϑ −
√

det ∇f sin(1 − γ )ϑ) + ∇f22 sin γϑ −
√

det ∇f sin(1 − γ )ϑ

= 2
√

dM

√
det ∇f sin ϑ, (48)

so that

dM(∇f11 sin γϑ −
√

det ∇f sin(1 − γ )ϑ) > 2
√

dM

√
det ∇f sin ϑ (49)

as ∇f22 < 0 to keep λ1,2 stable whilst ∇f11 > 0, and in particular the denominator in (47) is
positive by (38). Then, recalling the range of ϑ ,

d

dγ
dM(γ ) < 0 at γ∗ < γ < 1, (50)
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Figure 1. Upper: anomalous critical diffusion coefficients’ ratio for ∇f11 = 2,∇f22 = −2.5,

det ∇f = 0.5 (solid). Dashed lines mark the interval of stability (formally, dM < 0). The dotted
line marks the physical limit d = 1. Note that dM(γ ) > dM(1). Each point (γ > γ∗, dM) on the
plot corresponds to a system with a negative growth rate curve, tangent to the real axis at a single
point q = q− = q+. For the gradual descent of the curve below the real axis, see the lower picture.
Lower: the growth rate versus the wave number for γ = 1 (solid), γ = 0.9 (dashed).

proving that the anomalous critical ratio is higher than the normal value dM(1), rendering the
anomalous system always more stable than normal. Figure 1 depicts a typical example. Note
that there exists an interval of γ below the root γ∗, where the anomalous dM attains unphysical
negative values, i.e., the system is stable for all d. This interval corresponds to the inability
to satisfy (39a), as mentioned above. For values γ close to zero the condition is satisfiable
again, still keeping dM(γ ) > dM(1). However, this interval does not entail instability as the
additional condition (36) fails for all values 0 < γ < γ∗ and for some range above it.

From the standpoint of physics, the appearance of instability in the system above the
threshold of dM(γ ) will lead to a bifurcation and emergence of a different stable solution.
Linear analysis predicts that threshold; however, all bifurcation properties (e.g. sub- or super-
criticality) can be determined only via nonlinear analysis. However, a nonlinear generalization
of the model is a difficult task, because there arises a question about the ‘age’ of all reaction
products, a question that cannot be resolved in the framework of a general consideration. An
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example of a nonlinear model appears in [14], where the assumptions concerning the particles’
‘age’ differ essentially from the current work.

3.4. Eigenvalues near the ends of the instability interval

The set of unstable wave numbers ought to be determined and compared with the normal case.
For this purpose the growth rate function behaviour in close vicinity of the roots q = q± is
necessary. Expansion of (28a) about q2

± with |s| � 1, λ1, λ2 ∼ O(1) yields

Ps + Q ∼ 0 + o(|s|), (51a)

Q = d(det ∇f)1−γ q4 − q2 ImF(0, λ1)

Im λ1
+ det ∇f, (51b)

P = −tr ∇f(1+dq4(1−γ )(det ∇f)−γ )−q2 ImG(0, λ1) + (1 − γ )ImH
Im λ1

, (51c)

H = [(d + 1) det ∇f − λ2trw∇f](−λ1)
−γ . (51d)

Note that the quotient H equals F(0, λ1) upon replacing γ by γ + 1. As the sign of Q depends
on d,Q > 0 for all q or for the set {q| q < q− or q > q+}. To determine the sign of P, denote

y(γ ; ∇f, d) = (d − 1)∇f11 sin(1 − γ )ϑ +
√

det ∇f(d sin(2 − γ )ϑ + sin γϑ)

− (1 − γ )(trw∇f sin(γ + 1)ϑ + (d + 1)
√

det ∇f sin γϑ). (52)

Then

P = −tr ∇f(1 + dq4(1 − γ )(det ∇f)−γ )︸ ︷︷ ︸
>0

+q2y(γ ; ∇f, d)
(det ∇f)−γ /2

sin ϑ
. (53)

Since at large γ the function y(γ ; ∇f, d) > 0, it may have two roots, both lying within or
outside the set {γ | 0 < γ < 1} or it may have no roots, as

y(0; ∇f, d) = −tr ∇f sin ϑ + d
√

det ∇f sin 2ϑ > 0,

y(1; ∇f, d) = (d + 1)
√

det ∇f > 0.
(54)

Solving y(γ †; ∇f, d) = 0 yields

cot γ †ϑ = cot ϑ + c(γ †; ∇f, d), (55)

where

c(γ †; ∇f, d) = 2(1 − γ †)trw∇f cos ϑ − γ (d + 1)
√

det ∇f

sin ϑ[γ †trw∇f − tr ∇f + 2d
√

det ∇f cos ϑ]
. (56)

By

c(0; ∇f, d) > 0, c(1; ∇f, d) < 0 (57)

the function c(γ †; ∇f, d) changes sign at

γ ‡ =
(

1 +
(d + 1)

√
det ∇f

2 trw∇f cos ϑ

)−1

< 1. (58)

Hence for γ ‡ < γ < 1 the function c(γ ‡; ∇f, d) < 0, and the root of y(γ †; ∇f, d) satisfies
γ † > 1. Then y(γ ; ∇f, d) > 0 at 0 < γ < 1, proving P > 0. Since Q < 0 ∀ q− < q < q+,
the growth rate s ∼ −Q/P is positive for the wave numbers within this range close to q±
(wherever |s| � 1 holds). Conversely, for 0 < γ < γ ‡ the function c(γ ‡; ∇f, d) > 0, and
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y(γ ; ∇f, d) < 0 for some range within 0 < γ < 1. Then P may or may not become negative
due to its additional positive term. If P remains positive, the situation is as above. If P turns
negative, then for the corresponding range of γ s > 0 for wave numbers outside (q−, q+),
close to q±. In both cases s remains real in some vicinity of the roots q±.

It must be noted that numerical trials did not yield a physically relevant combination of
parameters yielding P < 0, so a negative sign for P is a hypothetical option. Remember that
condition (36) cannot be satisfied for γ < γ∗ and some interval of γ slightly above γ∗. Since
only the satisfaction of all conditions (36), (38) and (39a) entails instability onset, the inability
to satisfy (39a) for some γ < γ † is of little importance. The main interval of interest is γ

close to unity.
Once proven that there exists a root γ †, recall that y(γ ; ∇f, d) should actually have had

two roots, both lying inside or outside the interval 0 < γ < 1. This analysis cannot trace
the second root because of the transcendentality of both y and c. For the same reason the
transition from roots situated within the interval 0 < γ < 1 to roots outside it also cannot be
traced.

3.5. Asymptotic analysis

To complete the picture, an asymptotic analysis of the roots for short (q  1) and long
(q � 1) waves is performed. As explained before, at the latter limit no unstable modes
are expected, and the analysis is performed to confirm that the anomaly does not affect the
fundamental property of Turing instability initiation by waves of finite length.

A slight modification of (28a) is necessary due to the following reason. When
γ = 1, λ1, λ2 are roots of (28a) only at q = 0; however, for 0 < γ < 1 these are roots
of order 1 − γ for all q, stable and of little interest. Rearranging (28a) and ignoring the terms
(s − λj )

1−γ , j ∈ {1, 2} yields

dq4 − cf

2
(d − 1)q2 ((s − λ2)

γ − (s − λ1)
γ ) +

1

2
(d + 1)q2 ((s − λ2)

γ + (s − λ1)
γ )

+ (s − λ2)
γ (s − λ1)

γ = 0, cf = ∇f11 − ∇f22

λ1 − λ2
. (59)

First, to explore the roots of (59) for q  1, expand

s ∼ w1q
ν1

⎛
⎝1 +

∞∑
j=2

wjq
νj

⎞
⎠ ,

wj ∼ O(1) ∀j � 1, νj < 0, νj < νj−1 ∀ j � 2.

(60)

Existence of roots whose magnitude decays with q, i.e. ν1 < 0, is easily eliminated. Then the
appropriate power is ν1 = 2/γ and the leading order behaviour is obtained at O(q4)

w
2γ

1 + (d + 1)w
γ

1 + d = 0, (61)

giving

w
γ

1 = −1 or w
γ

1 = −d. (62)

Thus at the short wave range no real roots exist. Moreover, for γ close to unity (strictly,
2/3 < γ < 1) Re s < 0 as

arg w1 = π

γ
∈

(
π,

3π

2

)
. (63)
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To inspect the roots of (59) for q � 1, expand for one of the branches

s ∼ λ1 + qν1w1

⎛
⎝1 +

∞∑
j=2

qνj wj

⎞
⎠ , νj > 0 ∀ j. (64)

Since at q = 0 the roots are complex conjugates and λj ∼ O(1), in close vicinity of q = 0
they will remain complex conjugates. By comparison of the resulting powers of q, ν1 = 2/γ

and at O(q2),

w
γ

1 = −1

2
(d + 1) − i

2
(d − 1)

∇f11 − ∇f22√
4 det ∇f − tr2∇f

. (65)

Thus

arg w1 = π + ϕ

γ
, ϕ = arctan

(d − 1)(∇f11 − ∇f22)

(d + 1)
√

4 det ∇f − tr2∇f
, (66)

and

Re s ∼ 1

2
tr ∇f + q2/γ |w1| cos

π + ϕ

γ
+ o(q2/γ ). (67)

Different values of γ will cause Re s to ascend or descend according to the sign of cos(π+ϕ)/γ .
When the anomaly exponents are close to unity (1 − γ � 1), the cosine is negative and Re s

descends. The trend first changes at

γ = 2

3
+

2ϕ

3π
(68)

and then again and so on at

γ = 2

2j + 1
+

2ϕ

(2j + 1)π
, j = 1, 2, . . . . (69)

It is possible to show that pure imaginary roots of (59) exist only at a long wave bifurcation
point of the parameter manifold. Inserting s = iω,ω ∈ R, the product of the roots q2

± is given
by

q2
+q2

− = 1

d
(iω − λ2)

γ (iω − λ1)
γ . (70)

Bearing in mind that both ω and q2
± should be real, by complex conjugation of both sides

of (70)

ωj = Im λj , Re λj = 0, j ∈ {1, 2} (71)

and also

q± = 0, tr ∇f = 0, ω = ±2
√

det ∇f, (72)

which, as expected, coincides with a Hopf bifurcation point for normal diffusion. As at the
point q = 0 there is effectively no diffusion, its type (normal or anomalous) is immaterial.

To describe the range q ∼ O(1) another small parameter must be chosen. Let 1 − γ � 1
and

s ∼ s|γ=1 +
∞∑

j=1

(γ − 1)jwj . (73)

Then

(s − λj )
γ ∼ (s − λj )[1 + (γ − 1) log(s − λj ) + O((1 − γ )2)]. (74)
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Substituting into (59) and collecting terms of order O(1 − γ ) gives

w1 = (
2s|γ=1 + (d + 1)q2 − tr ∇f

)−1
{

1

2
(d − 1)q2 ∇f11 − ∇f22

λ1 − λ2
(L(λ2) − L(λ1))

+ (s|γ=1 − λ1)L(λ2) + (s|γ=1 − λ2)L(λ1) +
1

2
(d + 1)q2 (L(λ2) + L(λ1))

}
,

(75)

where

L(λj ) = (s|γ=1 − λj ) log(s|γ=1 − λj ), j = {1, 2}. (76)

Hence the function w1 is analytical at q = 0, and the bell-shaped curve s(q2), known for
normal diffusion, is slightly shifted, yet does not undergo any essential changes. Since for
γ = 1 the curve possesses a maximum within the range (q2

−, q2
+) where s ∈ R, for 1 − γ � 1

the situation should be similar. Differentiating (59) with respect to q2 and seeking an extremum
yields

2dq2
ext +

1

2
(d + 1)q2

ext ((sext − λ2)
γ + (sext − λ1)

γ )

− cf

2
(d − 1)q2

ext ((sext − λ2)
γ − (sext − λ1)

γ ) = 0. (77)

Using (59) again simplifies (77) to a tractable form

dq4
ext = (sext − λ2)

γ (sext − λ1)
γ , (78)

whence

sext = 1
2

(
tr ∇f +

√
tr2∇f − 4 det ∇f + 4

(
dq4

ext

)1/γ )
. (79)

The root with the plus sign was chosen because, for γ = 1, the extremum and the discriminant
are positive. It is possible to rearrange (77) as

4 − (d − 1)
∇f11 − ∇f22

λ1 − λ2

(
χ − 1

dχ

)
+ (d + 1)

(
χ +

1

dχ

)
= 0 (80)

with

χ = q2
ext

(sext − λ1)γ
(81)

and to solve the quadratics for χ :

χ = 2

d

id
√

� ∓ (d − 1)
√

d(−∇f12∇f21)

(d − 1)(∇f11 − ∇f22) − i(d + 1)
√

�
, � = 4 det ∇f − tr2∇f > 0. (82)

In order to choose the correct root, note that by definition (81)

sext − λ1 = q
2/γ
ext χ−1/γ = 1

2

√
4
(
dq4

ext

)1/γ − � − i

2

√
�

= d1/(2γ )q
2/γ
ext exp

(
−i arctan

√
�

4
(
dq4

ext

)1/γ − �

)
. (83)

Also

|χ |2 = q4
ext

(sext − λ1)γ (sext − λ2)γ
= 1

d
. (84)
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Therefore the correct root should be such that arg χ > 0. Then

arg χ = γ arctan

√
�

4
(
dq4

ext

)1/γ − �
, (85)

giving

q2
ext = 1√

d

(√
�

2
csc

arg χ

γ

)γ

(86)

and

sext = 1

2

(
tr ∇f +

√
� cot

arg χ

γ

)
. (87)

Recalling the monotonic descent of the cotangent,

sext|γ=1 > sext|γ<1, (88)

i.e., the maximal growth rate is smaller in an anomalous system under the stated assumptions.
It is possible to compute the value of γ where instability disappears: sext = 0 at

γ = arg χ

arctan(
√

�/(−tr ∇f))
> 0. (89)

4. Discussion

The investigation treated a two species, rotationally invariant sub-diffusive system with an
integro-differential memory operator involving both reaction and diffusion processes. It was
shown that in Laplace–Fourier space the terms are uncoupled similarly to normal diffusion
and anomalous models where anomaly is represented by simple fractional derivatives.

For anomaly exponents close to unity the critical diffusion coefficients’ ratio d is higher
than normal due to more severe conditions imposed on the system parameters. This property
renders the anomalous system always less unstable than normal. The normal bell-shaped
curve of the growth rate versus the wave number is shifted, so that the maximal growth rate is
diminished as the anomaly exponent becomes smaller. Further reduction of γ for fixed d will
eventually stabilize the system.

Asymptotic analysis showed that the dispersion relation possesses no real roots at the
limit of short waves (large q). At the limit of long waves (small q) the growth rate curves
coincide at the stable points λ1, λ2 for all γ ; however, the normally positive slope changes
sign intermittently for separated sets of γ .

In general, no pure imaginary roots exist. They are obtained formally at a long wave
(Hopf) bifurcation point, where another stable solution should emerge.

Nonlinear instability theory is of interest for future research, in particular, addressing
the essentially differing mechanisms of ‘aging’ of the reaction products and the properties of
corresponding bifurcation points.
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Appendix. Model with distinct waiting time distributions

The dispersion relation (10) can be obtained via another model where ψj are not equal, but
the jumps take place only to neighbour sites. Similarly to the model described in the main
text, a small density perturbation n about a spatially uniform homogeneous state of a system
of reagents evolves in accordance with the gradient ∇f of the underlying nonlinear kinetic
function f. Following the ideas in [7], let J−

i and J+
i be the loss and gain flux vectors of

particles n (without reaction) in the ith site of a one-dimensional lattice. Then the balance
equation at this site is given by

∂

∂t
ni = J+

i − J−
i + ∇f ni . (A.1)

In an unbiased random walk the gain and loss flux quantities are related to one another via
neighbour sites:

J+
i = 1

2 J−
i−1 + 1

2 J−
i+1. (A.2)

Combining (A.2) with (A.1),

∂

∂t
ni = 1

2
J−

i−1 +
1

2
J−

i+1 − J−
i + ∇f ni . (A.3)

Passing from discrete formulation to continuum and generally higher spatial dimensions,

∂n
∂t

= ∇2J− + ∇f n in �. (A.4)

As before, the domain � is the whole space or has a rectangular shape, and an initial condition
n(r, 0) is prescribed. The boundary conditions are taken either periodic or zero flux across
the domain boundary.

The diffusion rate of each species in the system is governed by a waiting time distribution
function, prescribing the probability to find a particle at every given moment t located at r. The
particle either rested there from the beginning of the reaction or migrated there at time t ′ from
position r′. Take ψ to be a diagonal matrix of dimension n × n whose non-zero entries ψjj

are the waiting distribution functions of species nj . It is assumed that the chemical reaction
does not alter the ‘age’ of the particles. With the composition governed by linear kinetics (3),
it is possible to express the connection between the loss flux vector at time t and the gain flux
at that site in the past:

J−
i (t) = ψ(t) e∇ftni (0) +

∫ t

0
ψ(t − t ′) e∇f(t−t ′)J+

i (t
′) dt ′. (A.5)

To paraphrase, to leave site i at time t a particle must have been there from the beginning or
moved there t − t ′ time ago. Using equation (A.1), replacing the discrete site i by continuous
position r and omitting the minus superscript,

J(r, t) = ψ(t) e∇ftn(r, 0) +
∫ t

0
ψ(t − t ′) e∇f(t−t ′)

(
∂

∂t ′
n(r, t ′) − ∇f n(r, t ′) + J(r, t ′)

)
dt ′.

(A.6)

For the particular case n = 1,∇f = −k equation (A.6) was derived in [7].
Upon writing the vectors n and J in a basis vj of the eigenspace of ∇f as

J =
n∑

j=1

Jj (r, t)vj , n =
n∑

j=1

Nj (r, t)vj , (A.7)
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temporal Laplace transform of (A.6) and consequent simplification via the convolution theorem
and the argument shift (13) yield

n∑
j=1

J̃j (I − ψ̃(s − λj ))vj =
n∑

j=1

(s − λj )Ñj ψ̃(s − λj )vj , (A.8)

wherein transformed quantities are denoted by tildes. For sub-diffusion of exponent γ the
waiting time distribution matrix⎛

⎜⎝
ψ1(t) 0

. . .

0 ψn(t)

⎞
⎟⎠

is known to have the following expansion in Laplace space:

ψ̃(s) ∼

⎛
⎜⎝

1 − (τ1s)
γ 0

. . .

0 1 − (τns)
γ

⎞
⎟⎠ + o(|s|γ ), (A.9)

where τ1, . . . , τn are constant [7]. Then the leading order evolution equation becomes
n∑

j=1

J̃j (s − λj )
γ C−1vj =

n∑
j=1

(s − λj )Ñj vj (A.10)

with

C−1 def=

⎛
⎜⎝

τ
γ

1 0
. . .

0 τ
γ
n

⎞
⎟⎠ , (A.11)

in matrix form reading

C−1V (Is − �)γ V −1J̃ = (I s − ∇f)ñ (A.12)

or

J̃ = (I s − ∇f)−γ C(Is − ∇f)ñ. (A.13)

Applying the temporal Laplace transform and spatial Fourier transform (denoted by hat)
to (A.4) gives

(I s − ∇f + q2(I s − ∇f)−γ C(Is − ∇f)) ˆ̃n = n̂(q, 0), (A.14)

granting the dispersion relation to be

det(I s − ∇f + q2(I s − ∇f)−γ C(Is − ∇f)) = 0. (A.15)

In the context of pattern formation the pertinent homogeneous state is stable in the absence
of diffusion, i.e., waves of small wave number cannot manifest instability. With q = 0 the
dispersion relation reduces to det(I s −∇f) = 0, and its roots are the stable eigenvalues of ∇f.
Hence the matrix Is − ∇f is non-singular and (A.15) becomes

det((I s − ∇f)γ + q2C) = 0, (A.16)

coinciding with (24). Here the terms of reaction and diffusion processes are uncoupled, a
result difficult to foresee a priori from the model formulation due to the joint memory term.
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